1 Given that $\mathrm{f}(x)=\frac{x+1}{x-1}$, show that $\mathrm{ff}(x)=x$.
Hence write down the inverse function $\mathrm{f}^{-1}(x)$. What can you deduce about the symmetry of the curve $y=\mathrm{f}(x)$?

2 The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined for all real numbers x by

$$
\mathrm{f}(x)=x^{2}, \quad \mathrm{~g}(x)=x-2
$$

(i) Find the composite functions $\mathrm{fg}(x)$ and $\operatorname{gf}(x)$.
(ii) Sketch the curves $y=\mathrm{f}(x), y=\mathrm{fg}(x)$ and $y=\operatorname{gf}(x)$, indicating clearly which is which.

3 Given that $\mathrm{f}(x)=1-x$ and $\mathrm{g}(x)=|x|$, write down the composite function $\mathrm{gf}(x)$.

On separate diagrams, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\operatorname{gf}(x)$.

4 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=1+2 \sin x$ for $-\frac{1}{2} \pi \leqslant x \leqslant \frac{1}{2} \pi$.
(i) Show that $\mathrm{f}^{-1}(x)=\arcsin \left(\frac{x 1}{2}\right)$ and state the domain of this function.

Fig. 6 shows a sketch of the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$.

Fig. 6
(ii) Write down the coordinates of the points A, B and C .

5 Given that $\arcsin x=\frac{1}{6} \pi$, find x. Find $\arccos x$ in terms of π.
6. The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined for the domain $x>0$ as follows:

$$
\mathrm{f}(x)=\ln x, \quad \mathrm{~g}(x)=x^{3}
$$

Express the composite function $\mathrm{fg}(x)$ in terms of $\ln x$.
State the transformation which maps the curve $y=\mathrm{f}(x)$ onto the curve $y=\mathrm{fg}(x)$.

7 Fig. 9 shows the line $y=x$ and the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{2}\left(\mathrm{e}^{x}-1\right)$. The line and the curve intersect at the origin and at the point $\mathrm{P}(a, a)$.

Fig. 9
(i) Show that $\mathrm{e}^{a}=1+2 a$.
(ii) Show that the area of the region enclosed by the curve, the x-axis and the line $x=a$ is $\frac{1}{2} a$. Hence find, in terms of a, the area enclosed by the curve and the line $y=x$.
(iii) Show that the inverse function of $\mathrm{f}(x)$ is $\mathrm{g}(x)$, where $\mathrm{g}(x)=\ln (1+2 x)$. Add a sketch of $y=\mathrm{g}(x)$ to the copy of Fig. 9 .
(iv) Find the derivatives of $\mathrm{f}(x)$ and $\mathrm{g}(x)$. Hence verify that $\mathrm{g}^{\prime}(a)=\frac{1}{\mathrm{f}^{\prime}(a)}$.

Give a geometrical interpretation of this result.

8 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=1-2 \sin x$ for $-\frac{1}{2} \pi \leqslant x \leqslant \frac{1}{2} \pi$. Fig. 3 shows the curve $y=\mathrm{f}(x)$.

Fig. 3
(i) Write down the range of the function $\mathrm{f}(x)$.
(ii) Find the inverse function $\mathrm{f}^{-1}(x)$.
(iii) Find $\mathrm{f}^{\prime}(0)$. Hence write down the gradient of $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.

